Abstract

The relationship between varying contour settings and part geometry provides insight into the attainable surface roughness and dimensional accuracy of parts fabricated in 17-4 stainless steel via selective laser melting (SLM). Varying the contour settings of laser power (W), scan speed (mm/s), and beam offset (mm) for unsupported inclined bars. The utilization of a coordinate measuring machine (CMM) and surface profilometer quantified the dimensional accuracy and average surface roughness (Ra) for upface, downface, and topface surfaces. Adjusting the laser power and scan speed had minimal affect to surface roughness compared to part geometry. Part dimensionality was affected by the incline angle, laser power, and scan speed. Lower energy densities (J/mm) resulted in over-sized parts, while higher energy densities resulted in undersized dimensions. A clear relationship between varying contour settings and part geometry with the dimensionality and surface roughness of 17-4 fabricated benchmark parts was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.