Abstract
The effect of daily electrolyte renewal on the corrosion mechanisms and kinetics of WE43Mg alloy in a modified simulated body fluid (m-SBF) is investigated by electrochemical, hydrogen evolution, analytical and surface characterization techniques. It is shown that by performing electrolyte renewal, physiological control of corrosion products and concentration of relevant electrolyte components such as calcium, phosphate and carbonate species, can be better emulated. Electrolyte renewal affects the corrosion mechanism by promoting partial dissolution of the corrosion layer and increasing mass transport, thereby delaying the increase in the corrosion layer protective ability and the occurrence of localized corrosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.