Abstract

Glass formation and the nature of the chemical interaction in the As2Se3–Tl2Te3 system were studied by differential-thermal (DTA), X-ray phase (XRD), microstructural (MSA) analysis. Based on the performed experiments T-x phase diagram is constructed. It is established that the phase diagram of the system is a partially quasi-binary section of the quaternary system Tl,As//Se,Te. Eutectic equilibrium and peritectic transformation process occur in the system. When the ratio of As2Se3 and Tl2Te3 components is 1:1, a new quaternary compound Tl2As2Se3Te3 is formed. It has been established that the Tl2As2Se3Te3 compound melts with an open maximum at 568[Formula: see text]K and crystallizes in a hexagonal symmetry. In the system, under normal cooling, the glass formation area reaches −80[Formula: see text]mol.% Tl2Te3, and in the mode of quenching in liquid nitrogen up to −100[Formula: see text]mol.% T12Te3. The photoelectric properties of glassy alloys (As2Se[Formula: see text](Tl2Te[Formula: see text] ([Formula: see text]; 0.3; 0.05) have been studied. Depending on the Tl2Te3 concentration of the system, the observed changes in the photoelectric properties and calculated parameters are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call