Abstract

The highest piezoelectric and ferroelectric properties of lead zirconate titanate (PZT) occur in vicinity of morphotropic phase boundary (MPB). In MPB, crystalline phase ratios play a crucial role in determining the dielectric properties. In this paper, PZT nanoparticles were synthesized by a modified sol gel procedure and the effects of different solvents of methanol, ethanol, 1-propanol, and acetic acid on tetragonal, rhombohedral, and monoclinic phase ratios near the Pb (Zr0.53Ti0.47)O3 were investigated. The X-ray diffraction results show the formation of almost pure perovskite structure in all samples. The volume fraction of tetragonal and rhombohedral phases, lattice constants, and lattice distortion were measured from the X-ray diffraction and Raman spectroscopic analysis for each solvent. Also, the domain size was compared between the solvents. A trace amount of monoclinic phase could be detected by Raman spectroscopy. The results show that acetic acid is the most appropriate solvent for synthesizing of PZT nanoparticles in which the tetragonal lattice parameters are ct=4.16 Ǻ and at=4.02 Ǻ with a distortion of 3%. The tetragonal volume fraction is estimated about 77%. The particle size and degree of agglomeration were measured according to field emission electron microscopy and indicates that 70 nm particles were formed for acid-based sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call