Abstract

ABSTRACTSiO2 thin films were prepared on p-type Si (100) substrates by atomic layer deposition (ALD) using SiH2Cl2 and O3(1.5 at.%)/O2 as precursors at 300. The growth rate of the deposited films increased linearly with increasing amount of simultaneous SiH2Cl2 and O3 exposures, and was saturated at about 0.35 nm/cycle with the reactant exposures of more than 3.6×109L. A larger amount of O3/O2 than that of SiH2Cl2 was required to obtain a saturated deposition reaction. The composition of the deposited film also varied with O3/O2 exposure at a fixed SiH2Cl2 exposure. The Si/O ratio gradually decreased to 0.5 with increasing amount of O3/O2 exposure. Finally, we also compared the physical and electrical characteristics of the ALD films with those of the films deposited by conventional chemical vapor deposition (CVD) methods. In spite of low process temperature, the SiO2 film prepared by the ALD method was in wet etch rate, surface roughness, leakage current and breakdown voltage superior to that by other several CVD methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call