Abstract

A 3D velocity model was created by using stacking velocity of 9 seismic lines and average velocity of 6 wells drilled in Iraq. The model was achieved by creating a time model to 25 surfaces with an interval time between each two successive surfaces of about 100 msec. The summation time of all surfaces reached about 2400 msec, that was adopted according to West Kifl-1 well, which penetrated to a depth of 6000 m, representing the deepest well in the study area. The seismic lines and well data were converted to build a 3D cube time model and the velocity was spread on the model. The seismic inversion modeling of the elastic properties of the horizon and well data was applied to achieve a corrected velocity cube. Then, the velocity cube was converted to a time model and, finally, a corrected 3D depth model was obtained. This model shows that the western side of the study area, which is a part of the stable shelf, is characterized by relatively low thickness and high velocity layers. While the eastern side of the study area, which is a part of the Mesopotamian, is characterized by high thickness and low velocity of the Cretaceous succession. The Abu Jir fault is considered as a boundary between the stable and unstable shelves in Iraq, situated at the extreme west part of the study area. The area of relatively high velocity gradient is considered as the limit of the western side of the Mesopotamian basin. This area extends from Najaf-Karbala axis in the west to the Euphrates River in the east. It is found that the 3D stacking velocity model can be used to obtain good results concerning the tectonic boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call