Abstract
In this work, the performance of microreactors irradiated with conventional (fluorescent) and UV-LED light was evaluated. For this purpose, a microfluidic reactor with an equivalent diameter of 133.5 μm was used. In addition, the effect of scale variation on the performance of photochemical reactors was assessed using reactors with three internal diameters (600, 1200, and 2300 μm), 2 residence times (30 and 60 s), and two sources of UVA radiation (A with irradiance of 115 W m-2 and B with irradiance of 44 W m-2). Also, the relationship between the configuration of the photocatalyst film and the effect of the scale on the performance of photochemical reactors was experimentally and theoretically investigated. For both cases, methylene blue dye was used as a model pollutant and titanium dioxide (TiO2) as a photocatalyst deposited on the inner wall of the photocatalytic reactors. For the residence time of 30 s, the smaller the reactor diameter, the greater was the degradation (22, 18, and 6%, respectively, for lamp A and 17, 16, and 8 %, respectively, for lamp B). The influence of the diameter of the reactor was also observed for the residence time of 60 s, but only for the reactor with a 2300-μm internal diameter. The reactors with diameters 600 and 1200 μm only showed different results when illuminated with lamp B (33 and 28% of methylene blue conversion, respectively). Moreover, computational simulation results suggested higher efficiency as the reactor's diameter is decreased and an optimum thickness of photocatalyst film to maximize the performance of devices in which photocatalytic reactions are carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.