Abstract
This paper investigates the surface characteristics of tool steel material in the roller burnishing on CNC lathe. Burnishing is a cold working, surface finishing process in which plastic deformation of surface irregularities takes place by exerting pressure through a hard roller on a surface to generate uniform and work hardened surface. The tool and work piece materials are tungsten carbide (69 HRC) and HCHCr tool steel (35 HRC). The input parameters are burnishing force, speed, feed and the number of passes. The output parameters are surface roughness and surface hardness. The surface roughness has reduced by 127.7% and hardness has improved by 55.5%. The minimum surface roughness obtained in the operating condition of burnishing force of 900 N, feed of 0.1 mm/rev, speed of 600 rpm and fourth number of pass and the value is 0.153 μm. The empirical model is developed for the surface characteristics and validated using Pearson product moment correlation coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machining and Machinability of Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.