Abstract

Ti-6Al-4V alloy with local anisotropic characteristics is produced by electropulsing treatment (EPT) and used in ultraprecision rotary diamond cutting to explore the deformation mechanism of the alloy. Two different orientations of lamellar martensite α give rise to the local anisotropic behaviour. Critical resolved shear stress (CRSS) is introduced in this paper to investigate the slip modes of the hexagonal closest packing martensite. A geometrical and physical model is also proposed for calculation of resolved shear stresses on various slipping systems. The results show that glide occurs in some certain directions on the condition that resolved shear stress equals or exceeds the CRSS. The cutting force varies with martensitic orientations, which is supposedly due to the combined effects of lamellar α phase sizes and the coordination or competition of diverse slipping directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.