Abstract
MoS2 has garnered considerable attention as an exceptional co-catalyst that is capable of significantly enhancing the efficiency of H2O2 decomposition in advanced oxidation processes (AOPs). This improvement allows for a reduction in the required amounts of H2O2 and Fe2+. In this study, we investigated the cyclic durability of photo-Fenton catalysts, focusing on the degradation of pollutants through the introduction of PPy into heterogeneous 1T-2H MoS2 units. The resulting photothermal-Fenton catalysts, comprising non-ferrous Fenton catalysts, demonstrated excellent degradation performance for simulated pollutants. In comparison with 1T-2H MoS2, the PPy@1T-2H MoS2 composite exhibited remarkable stability and photothermal enhancement in the photo-Fenton degradation of methylene blue (MB) under visible light irradiation. The photo-Fenton reaction efficiently degraded contaminants, achieving 99% removal within 5 min and 99.8% removal within 30 min. Moreover, the co-catalyst complex displayed enhanced cyclic stability during the photo-Fenton reaction, with a contaminant removal efficiency of 92%, even after the 13th cyclic test. The combined effects of PPy and 1T-2H MoS2 demonstrated improved efficiency in both photocatalytic and photo-Fenton catalytic reactions. Furthermore, PPy@1T-2H MoS2 exhibited outstanding performance in the photothermal evaporation of water, achieving an efficiency of 86.3% under one solar irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.