Abstract

BackgroundIn the intensive care unit (ICU), clinical staff must stay vigilant to promptly detect and treat hypotensive episodes (HEs). Given the stressful context of busy ICUs, an automated hypotensive risk stratifier can help ICU clinicians focus care and resources by prospectively identifying patients at increased risk of impending HEs. The objective of this study was to investigate the possible existence of discriminatory patterns in hemodynamic data that can be indicative of future hypotensive risk.MethodsGiven the complexity and heterogeneity of ICU data, a machine learning approach was used in this study. Time series of minute-by-minute measures of mean arterial blood pressure, heart rate, pulse pressure, and relative cardiac output from 1,311 records from the MIMIC II Database were used. An HE was defined as a 30-minute period during which the mean arterial pressure was below 60 mmHg for at least 90% of the time. Features extracted from the hemodynamic data during an observation period of either 30 or 60 minutes were analyzed to predict the occurrence of HEs 1 or 2 hours into the future. Artificial neural networks (ANNs) were trained for binary classification (normotensive vs. hypotensive) and regression (estimation of future mean blood pressure).ResultsThe ANNs were successfully trained to discriminate patterns in the multidimensional hemodynamic data that were predictive of future HEs. The best overall binary classification performance resulted in a mean area under ROC curve of 0.918, a sensitivity of 0.826, and a specificity of 0.859. Predicting further into the future resulted in poorer performance, whereas observation duration minimally affected performance. The low prevalence of HEs led to poor positive predictive values. In regression, the best mean absolute error was 9.67%.ConclusionsThe promising pattern recognition performance demonstrates the existence of discriminatory patterns in hemodynamic data that can indicate impending hypotension. The poor PPVs discourage a direct HE predictor, but a hypotensive risk stratifier based on the pattern recognition algorithms of this study would be of significant clinical value in busy ICU environments.

Highlights

  • In the intensive care unit (ICU), clinical staff must stay vigilant to promptly detect and treat hypotensive episodes (HEs)

  • We anticipate that the results reported in this paper will be of interest to biomedical engineers interested in developing decision support systems as well as to ICU clinicians

  • This work investigated the existence of discriminatory patterns in ICU data that can be indicative of impending HEs

Read more

Summary

Introduction

In the intensive care unit (ICU), clinical staff must stay vigilant to promptly detect and treat hypotensive episodes (HEs). Given the stressful context of busy ICUs, an automated hypotensive risk stratifier can help ICU clinicians focus care and resources by prospectively identifying patients at increased risk of impending HEs. The objective of this study was to investigate the possible existence of discriminatory patterns in hemodynamic data that can be indicative of future hypotensive risk. ICU clinicians must be vigilant to detect and treat hypotensive episodes (HEs) in a timely manner. This is challenging to achieve for several reasons. Even with sufficient time, resources, and information, it seems extremely difficult to estimate the likelihood of an impending HE with bare-eye analysis alone, especially for HEs that are not preceded by obvious patterns such as a gradual decrease in blood pressure

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.