Abstract
ABSTRACT Sketching, a dimensionality reduction technique, has received much attention in the statistics community. In this paper, we study sketching in the context of Newton's method for solving finite-sum optimization problems in which the number of variables and data points are both large. We study two forms of sketching that perform dimensionality reduction in data space: Hessian subsampling and randomized Hadamard transformations. Each has its own advantages, and their relative tradeoffs have not been investigated in the optimization literature. Our study focuses on practical versions of the two methods in which the resulting linear systems of equations are solved approximately, at every iteration, using an iterative solver. The advantages of using the conjugate gradient method vs. a stochastic gradient iteration are revealed through a set of numerical experiments, and a complexity analysis of the Hessian subsampling method is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.