Abstract

Global Navigation Satellite Systems (GNSS) tomography is a well-recognized modeling technique for reconstruction, which can be used to investigate the spatial structure of water vapor with a high spatiotemporal resolution. In this study, a refined near real-time tomographic model is developed based on multi-source data including GNSS observations, Global Forecast System (GFS) products and surface meteorological data. The refined tomographic model is studied using data from Hong Kong from 2 to 11 October 2021. The result is compared with the traditional model with physical constraints and is validated by the radiosonde data. It is shown that the root mean square error (RMSE) values of the proposed model and traditional model are 0.950 and 1.763 g/m3, respectively. The refined model can decrease the RMSE by about 46%, indicating a better performance than the traditional one. In addition, the accuracy of the refined tomographic model is assessed under both rainy and non-rainy conditions. The assessment shows that the RMSE in the rainy period is 0.817 g/m3, which outperforms the non-rainy period with the RMSE of 1.007 g/m3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call