Abstract

The present study employs a Finite Element Method (FEM) atomic approach to investigate the nanoscale mechanisms of sliding friction. The current investigation chooses diamond-like carbon as the hard material, and copper as the soft material. The atomic configurations following sliding under non-interactive, attractive, and repulsive interaction forces are observed for soft-to-soft, hard-to-soft, and hard-to-hard sliding systems. The relationships between the normal force, the friction force, and the sliding distance are discussed. The current simulation results exhibit a similar trend with the findings of previous studies using molecular dynamics approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.