Abstract

Patient and physiological motion can cause artifacts in DTI of the spinal cord which can impact image quality and diffusion indices. The purpose of this investigation was to determine a reliable motion correction method for pediatric spinal cord DTI and show effects of motion correction on DTI parameters in healthy subjects and patients with spinal cord injury. Ten healthy subjects and ten subjects with spinal cord injury were scanned using a 3T scanner. Images were acquired with an inner field-of-view DTI sequence covering cervical spine levels C1 to C7. Images were corrected for motion using two types of transformation (rigid and affine) and three cost functions. Corrected images and transformations were examined qualitatively and quantitatively using in-house developed code. Fractional anisotropy (FA) and mean diffusivity (MD) indices were calculated and tested for statistical significance pre- and post- motion correction. Images corrected using rigid methods showed improvements in image quality, while affine methods frequently showed residual distortions in corrected images. Blinded evaluation of pre and post correction images showed significant improvement in cord homogeneity and edge conspicuity in corrected images (p<0.0001). The average FA changes were statistically significant (p<0.0001) in the spinal cord injury group, while healthy subjects showed less FA change and were not significant. In both healthy subjects and subjects with spinal cord injury, quantitative and qualitative analysis showed the rigid scaled-least-squares registration technique to be the most reliable and effective in improving image quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.