Abstract

For the management of severe accidents of sodium-cooled fast breeder reactor, the coolability of the fuel debris bed on a core support plate is a key concern during the post-accident heat removal phase. In an air ingress scenario, the reactions between the fuel and highly oxidized sodium are likely to form sodium uranoplutonate. This would negatively influence the coolability of the fuel debris bed due to a lowering of the thermal conductivity and density. This study has focused on the formation kinetics of sodium uranate from UO2 and liquid sodium including oxygen at a high concentration. In this paper, the experiments on reaction initiation temperatures, reaction rates, and the decomposition of sodium uranate are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call