Abstract
Direct and reverse interconversion pathways of six epoxysaccharide molecules, namely, three molecules with epoxypyranose rings: methyl 2,3-anhydro-2,3,4-trideoxy- β- D-lyxohexopyranoside, methyl 2,3-anhydro-4-deoxy- α- D, L-ribo- and - α- D, L-lyxohexopyranosides and three molecules with epoxypyranose rings: methyl 2,6-di- O-acetyl-3,4-anhydro- α- D, L-( 6,6− 2 H 2 ) derivatives of talopyranoside and galactopyranoside, and methyl 3,4-anhydro- α- D, L-allopyranoside were simulated by the Wiberg and Boyd method. This made it possible to determine all stationary and intermediate forms in which anhydropyranose rings can exist. Calculations of barrier heights for interconversion and energies of global minima have shown that conformations revealed in X-ray studies are more favorable. Most of the local minima found lie in the vicinity of the boat (B) forms, the other minima correspond to conformations possessing symmetry elements of the skew–boat (S) and twist (T) forms. The interconversion pathways of the molecules investigated are presented on the Cremer–Pople diagram. We studied the effect of various structural factors on the character of conformational transformations, heights of transition barriers, the form of the ground state, and the energy of stationary forms, and their number and location on the Cremer–Pople diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.