Abstract

Recent work on chatter in grinding has shown that the presence of torsional vibration is potentially significant. Controlling the torsional characteristics of the workpiece drive may eliminate chatter. These findings lead to a re-examination of the fundamental grinding force equation, where the surface speeds are conventionally assumed to be constant. If torsional vibration is present for both the grinding wheel and the workpiece, there will be two extra terms in the grinding force equation. Traditionally, experimental measurements used to try and verify the cutting force model have been undertaken under non-vibrating conditions. Any attempt to verify a cutting force model under vibrating conditions requires the continuous measurement of several parameters as a function of time. One of these is the instantaneous depth of cut, δ. This paper presents experimental results for an investigation into the in-process measurement of δ under chatter conditions on a cylindrical grinding machine. This initial investigation has indicated that such a measurement is very difficult and is prone to errors if chatter is present. It is proposed and anticipated that controlled (vibration) excitation under inherently stable conditions will allow for the required measurements to be made with sufficient accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.