Abstract
The interaction of magnesium-ADP with skeletal muscle heavy meromyosin has been studied by measuring the accompanying release of protons. Total pH changes of the order of 0.03 were involved, and measurements were performed with a discrimination of some ten-thousandths of a pH unit. At pH 8.0 and 25 degrees C about 0.5 mol of protons per mol of heavy meromyosin is released at saturation. A stoichiometry of binding close to 2 mol of ADP per mol of protein was found, with a binding constant, obtained from the proton release titration curve (pH 8.0, 25 degrees C), of 2 X 10(5) M-1. At 5 degrees C the release of protons per mole is slightly greater, and the binding constant is somewhat increased, reflecting a negative enthalpy of binding. Similar proton release behavior is observed in the presence of manganous ions in place of magnesium. The liberation of protons is thus unrelated to the temperature-dependent isomerization of myosin in the presence of substrate. Alkylation of a reactive thiol group (SH1) does not change the proton liberation at pH 8.0. From the pH dependence of proton release, the association constant of heavy meromyosin with magnesium-ADP at other pH values can be inferred and shows an appreciable rise as the pH increases. The pH-proton release profile also allows the pK of the ionizing groups perturbed by the ligand to be deduced. At least two groups ionizing above pH 7 and one below are involved. Their pK's in the unperturbed state are assigned as 8.5, 9.3, and about 6.6, respectively; they are displaced in the complex to about 8.0, 9.1, and 6.3. A relation to the pH-activity profile of myosin ATPase is indicated. The pH-proton release profile is somewhat changed when the SH1 group is alkylated. Measurements with potassium-ADP, in the absence of magnesium, show that at pH 8.0 there is no proton release but rather a sizeable proton absorption (about 0.5 mol of protons per mol of heavy meromyosin). The association constant derived from the titration curves (pH 8.0, 25 degrees C) is 3 X 10(4) M-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.