Abstract

An all‐sky charge‐coupled device imager capable of measuring wave structure in the OH, O2, and O I (557.7 nm) airglow emissions was operated at Cachoeira Paulista, Brazil (23°S, 45°W), for 2 years in collaboration with Utah State University, Logan. The dominant quasi‐monochromatic gravity wave components investigated over a ∼1 year period (September 1998 to October 1999) have been extracted, and their seasonal variations have been measured. A total of 283 wave events were measured, exhibiting horizontal wavelengths from 5 to 60 km, observed periods from 5 to 35 min, and horizontal phase speeds of up to ∼80 m s−1. The large‐scale “band” wave patterns (horizontal wavelength between 10 and 60 km) exhibited a clear seasonal dependence on the horizontal propagation direction, propagating toward the southeast during the summer months and toward the northwest during the winter. The direction of propagation was observed to change abruptly around the equinox period in mid March and at the end of September. Using a numerical simulation of gravity wave propagation in a seasonally variable climatological wind field, we have determined that the observed anisotropy in the wave propagation directions can be attributed to a strong filtering of the waves in the middle atmosphere by stratospheric winds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.