Abstract
Softwood pulp flow in rotating and non-rotating grooves is numerically simulated in the present study to investigate the fluid flow and the forces acting on a representative surface mounted in the groove. The viscosity of softwood pulp with various consistencies is available from the measurements reported in the literature providing the opportunity to examine the effects of fiber consistency on the velocity and pressure distribution within the groove. The simulations are carried out in OpenFOAM for different values of gap thickness, angular velocity and radial positions from which the pressure coefficient and shear forces values are obtained. It is found that the shear forces within the gap increase linearly with the angular velocity for all fiber consistencies investigated and in both grooves. Also, this behavior can be successfully predicted by modeling the gap flow as a Couette flow in a two-dimensional channel. Meanwhile, a more detailed analysis of the flow kinetic energy close to the stagnation point using Bernoulli’s principle is carried out to provide a better understanding of the pressure coefficient variation with angular velocity in the non-rotating groove. A comparison of pressure coefficients obtained numerically with those calculated by considering the compression effects revealed that the comparison effects are dominating in the pulp flow within the groove.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.