Abstract

Based on condition based maintenance (CBM), oil can be replaced according to its measured status or in-situ with online monitoring systems. The acidity of oil, e.g. the total acid number (TAN), is an important parameter to evaluate lubricant ageing. Previous studies have shown the feasibility of thick film (TF) sensors based on ion selective electrodes (ISE) for the detection of engine oil acidity changes due to oxidation. Further study has shown the TF sensors generally have very long response times due to the extremely low conductivity of oils. This work focuses on the effect on the sensor response time and accuracy caused by introducing metal particles in oil, and the influence of water content in the oil. Two types of TF working electrodes (WE) have been tested and TAN was measured for each oil sample. The results show glass-based TF sensors can work under high temperature up to 120 °C and the metal particles in the oil can help to reduce the sensor response time significantly. It was also found that the presence of water in the oil has a minor influence on the voltage output of the TF sensor but can be helpful in the ionization and detection mechanism of H+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call