Abstract
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study presents a series of Monte Carlo computer simulations that investigates Bayesian and multiple imputation strategies based on factored regressions. When the model’s distributional assumptions are satisfied, these methods generally produce nearly unbiased estimates and good coverage, with few exceptions. Severe misspecifications that arise from substantially non-normal distributions can introduce biased estimates and poor coverage. Follow-up simulations suggest that a Yeo–Johnson transformation can mitigate these biases. A real data example illustrates the methodology, and the paper suggests several avenues for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.