Abstract

The aim of this research is to investigate a type of failure of dry carbide hobbing that occurs when the generated chips are pinched and crushed between the hob cutting edge and the work gear tooth flank by utilizing the finite element method. This problem is of great importance because gear hobbing is extensively used in the manufacturing industry. Many machine tool manufacturers have so far developed dry hobbing techniques using carbide hobs as there is a growing acknowledgment that it is necessary to employ carbide hobbing for higher productivity and pollution free gear cutting. To meet the increasing needs of cost reduction and environmentally friendly methods, dry hobbing being employed for gear mass production has completely eliminated the need of tool cooling. However, carbide hobbing has not come into wide use due to the high cost of carbide hobs, and mainly due to the unexpected chipping of the brittle carbide material, making it difficult to control the tool service life. Dry hobbing often causes problems such as chipping of the carbide hob tooth and/or damage of the surface finishing when the generated chips are pinched and crushed between the hob cutting edge and the work gear tooth flank. A manufacturing case of helical gears is taken as a case study, and it was simulated using a coupled thermomechanical rigid viscoplastic FEM analysis. Simulations have successfully identified a chip crush between four adjacent generating positions and thus, a definite mechanism that cause chip crush is revealed. Furthermore, valuable insights during chip formation, i.e., stress, strain, strain rate, temperature gradients, etc., are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.