Abstract

AbstractComposite dropsonde profiles are analyzed for developing and nondeveloping tropical waves in an attempt to improve the understanding of tropical cyclogenesis. These tropical waves were sampled by 25 reconnaissance missions during the 2010 Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field campaign. Comparisons are made between mean profiles of temperature, mixing ratio, relative humidity, radial and tangential winds, relative vorticity, and virtual convective available potential energy (CAPE) for genesis and nongenesis cases. Genesis soundings are further analyzed in temporal progression to investigate whether significant changes in the thermodynamic or wind fields occur during the transition from tropical wave to tropical cyclone.Significant results include the development of positive temperature anomalies from 500 to 200 hPa 2 days prior to genesis in developing waves. This is not observed in the nongenesis mean. Progressive mesoscale moistening of the column is observed within 150 km of the center of circulation prior to genesis. The genesis composite is found to be significantly moister than the nongenesis composite at the middle levels, while comparatively drier at low levels, suggesting that dry air is more detrimental to genesis when located at the middle levels. Time-varying tangential wind profiles reveal an initial delay in intensification, followed by an increase in organization 24 h pregenesis. The vertical evolution of relative vorticity, in addition to a warm-over-cold thermal structure, is more consistent with a top-down than a bottom-up genesis mechanism. Last, CAPE values are much greater for nongenesis than genesis profiles, indicating that greater instability does not necessarily favor genesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call