Abstract
Electron beams can be used for the radiotherapy treatment of superficial cancers. In many cases of electron beam radiotherapy, tissue equivalent bolus material placed on the skin is to be used to enhance skin dose. An air gap might be present between the bolus and the skin due to variation in the patient contour. The impact of semi-infinite air gaps under bolus material on central axis depth dose distributions for electron beams was investigated in this study. Semi-infinite air gaps were introduced between bolus and the surface of a water phantom for air gap sizes up to 20.0 mm and for bolus thicknesses of 5, 10 and 15 mm. The electron beams studied had nominal energies of 6, 10 and 14 MeV and circular fields of 3, 5, 7 and 9 cm diameter. Depth dose measurements were carried out in the water phantom with a Scanditronix p-Si electron diode. It was found that the impact of an air gap is dependent on beam energy, field size, air gap size and bolus thickness used. The impact of the air gap on central axis depth dose distribution increased with decreasing field size, increasing air gap size, decreasing electron beam energy and increasing bolus thickness. For 15 mm bolus, 3 cm diameter circular field, 6 MeV beam and the 20 mm air gap, the maximum dose and the surface dose was reduced by approximately 60% and the depth of dose maximum shifted 3.5 mm. An air gap between bolus and a patient should be avoided to ensure that there is no impact on the treatment. The measured data in this study can be used to determine the likely degree of impact on the treatment, of unavoidable air gaps between bolus and the patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australasian Physics & Engineering Sciences in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.