Abstract

Flow through a driven, 7.5 times life-size vocal fold model was investigated at corresponding life-size flow rates of Q mean = 89.1 ml/s, 159.4 ml/s, and 253.0 ml/s. The flow was scaled to match physiological values for Reynolds, Strouhal, and Euler numbers. The models were driven at a life-size frequency of 94 Hz. Particle image velocimetry (PIV) data were acquired in the anterior–posterior midplane of the glottis, and the unsteady transglottal pressure drop across the vocal folds was simultaneously measured. Flow and pressure data were obtained at four discrete instances during the closing phases of the phonatory cycle for which t/T open = 0.60, 0.70, 0.80, and 0.90. The glottal jet trajectory exhibited a bimodal distribution of flow attachment between the two medial surfaces of the glottis. Vortex shedding at the trailing edge separation point generated instabilities in the shear layer, which caused large oscillations in the glottal jet orientation downstream of the glottal exit. The development of the Coanda effect during the glottal cycle was found to have minimal impact on the transglottal pressure drop, suggesting that flow orientation does not directly influence the dipole sound source. The change in transglottal pressure drop as a result of jet trajectory was less than 2% for all three investigated flow rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call