Abstract

One critical aspect for the development of label-free immunosensors is the employment of highly uniform and repeatable antibody immobilization techniques. In this study, we investigated the use of two different silane molecules (3-glycidyloxypropyl)trimethoxysilane (GPS), and (3-mercaptopropyl)trimethoxysilane (MTS) for the immobilization of fluorescently labeled IgG antibodies on planar ZnO surfaces. The chemical modification of the surfaces was investigated using water contact angle measurements, AFM, and fluorescence microscopy. The results of the water contact angle measurements indicate increased surface hydrophobicity after treatment with GPS and MTS as compared to the control. Surface modification was further verified through AFM measurements which demonstrate an increased surface roughness and particle height after treatment with antibodies. The results of the fluorescence studies indicate that the immobilization protocol employing MTS produced 21% higher fluorescence on average with greater uniformity than the GPS-based protocol, which indicates a higher overall density in antibody coverage on the surface of the ZnO. Acoustic sensor tests were employed to confirm the functionality of sensors treated with the MTS protocol. The results indicate that the immobilization protocol imparts sensitivity and specificity to the ZnO-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.