Abstract
BackgroundIn recent decades, multidrug-resistant non-fermenting Gram-negative pathogens, particularly Acinetobacter baumannii and Pseudomonas aeruginosa, have been recognized as a major cause of healthcare-associated and nosocomial infections and outbreaks.ObjectivesThe aim of this study was to determine the prevalence and pattern of antibiotic resistance in A. baumannii and P. aeruginosa isolates collected from intensive care units (ICUs).MethodsOne hundred fifty-five clinical isolates, including 80 (51.6%) isolates of A. baumannii and 75 (48.4%) isolates of P. aeruginosa, from hospitalized patients in the ICUs of a teaching hospital in Ahvaz, Iran, were collected from January 1 to December 30, 2013. The organisms were identified with conventional bacteriological methods, and antimicrobial susceptibility testing was performed on all isolates in accordance with clinical laboratory and standards institute (CLSI) guidelines.ResultsThe maximum resistance rates among A. baumannii isolates were observed for ciprofloxacin and trimethoprim-sulfamethoxazole (96.9% and 95.2%, respectively). For P. aeruginosa isolates, the maximum resistance rates were reported for ceftriaxone and trimethoprim-sulfamethoxazole (97.2% and 92.4%, respectively).ConclusionsThe majority of A. baumannii and P. aeruginosa isolates were found to be resistant to commonly recommended antibiotics. Therefore, surveillance of antibiotic consumption and proper antibiotic administration guidelines are essential for preventing major outbreaks in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.