Abstract

Abstract. This study examines current accessible field-based instructional strategies across geoscience departments in the United States that support students with visual, hearing, and mobility disabilities. A qualitative questionnaire was administered to geoscience instructors from over 160 US geology departments. Outcomes from the data analysis were used to categorize accessible instructional practices into three distinct pedagogical methods: modifications, accommodations, and options for accessible instructional design. Utilizing the lens of critical disability theory, we then investigated how the identified teaching practices varied in inclusion, as some strategies can often be more exclusionary towards individual students with disabilities. Although from a US perspective, the outcomes of this study offer practical suggestions for providing accessible and inclusive field experiences that may inform a global geoscience instructional context.

Highlights

  • According to the most recent World Report on Disability (WHO, 2011), 15 % of the global population is living with a disability

  • The total number of students marginalized from these programs remains largely unknown as disability data are only disclosed at the discretion of the student because US legislation such as the Family Educational Rights and Privacy Act (FERPA) and Health Insurance Portability and Accountability Act (HIPAA) protects the privacy of student’s education and medical records, respectively

  • STEM disciplines related to the field-focused science disciplines have the potential to inadvertently discourage students who are not drawn to activities that take place in the natural environment (Schwartz and Corkery, 2011; Sherman-Morris and McNeal, 2016), including those with disabilities (Carabajal et al, 2017; Hall et al, 2004; Healey et al, 2002)

Read more

Summary

Introduction

According to the most recent World Report on Disability (WHO, 2011), 15 % of the global population is living with a disability. Investigations have reported that students with disabilities are often dissuaded from pursuing an interest in the geosciences because of the assumption that all geoscientists have to be field practitioners, causing students to self-assess their abilities and conclude that they may not be able to manage the rigorous program expectations and requirements to study in the field (Hall et al, 2004; Healey et al, 2002; Locke, 2005) In addition to these physical requirements, many geoscience educators identify the lack of flexible, accessibly designed learning opportunities that extend beyond the field as catalyzing the underrepresentation of students in career pathways and geoscientists with disabilities in the workforce (Atchison and Libarkin, 2016; Locke, 2005; NSF, 2019)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call