Abstract

A gas–liquid swirling flow with shear-thinning liquid rheology exhibits complex behavior. In order to investigate its flow characteristics, experiments and computational fluid dynamics (CFD) simulations are conducted based on dimensional analysis. A Malvern particle size analyzer and electrical resistance tomography are applied to obtain the bubble size distribution and section void fraction. A Coriolis mass flowmeter is applied to obtain the mixture flow rate and mixture density for an entrance gas volume fraction smaller than 7%. The CFD coupled mixture multiphase model and large eddy simulation model are applied, considering the liquid shear-thinning power-law rheology. The results show that the swirling flow can be divided into developing and decaying sections according to the swirl intensity evolution in the axial direction. A gas–liquid swirl flow with shear-thinning liquid prohibits a core-annulus flow structure. A smaller index n contributes to maintaining the development of the swirl flow field and its core-annulus flow structure so that the swirl flow can form over a shorter distance with a stronger intensity. For a more uniform distribution of the apparent viscosity, the gas column in the pipe center is thinner. On the other hand, a larger consistency k enlarges the stress tensor. The amplitude of the velocity and the pressure of the core-annulus flow structure are reduced. A weaker swirl intensity appears with a wider gas column appearing as a consequence. Furthermore, the swirl number decays with an exponential behavior with parameters sensitive to the consistency k and index n of the decaying section of the swirling flow field. These are beneficial to gas–liquid separator design and optimization when encountering the shear-thinning power-law liquid phase in the petroleum industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call