Abstract

The presence of intensely fissured soils is often found to relate to high geotechnical risks, such as landslide risk. This is especially the case of the Southern Apennines, Italy, where slopes formed of intensely fissured clays are frequently affected by landslides. The latter are generally triggered by rainfall infiltration, which takes place through the outcropping, unsaturated clayey soil cover. With the final aim of reducing landslide risk in areas covered by fissured clays, a detailed hydro-mechanical characterisation of these materials is required. While the behaviour of fully saturated fissured clays has been investigated in the last decade, only a few studies dealing with unsaturated, natural fissured clays are reported in the literature. The present paper aims to give a contribution toward filling this gap by extending an investigation campaign started a few years ago on the Paola Doce fissured clay outcropping on the Pisciolo slope (Southern Apennines, Italy). The physical properties of the material and some of its key micro- to meso-structural features are first analysed, the latter also based on Scanning Electron Microscope (SEM) micrographs of an undisturbed sample taken at 1.4 m depth on the Pisciolo slope, which is mainly formed of Paola Doce clay. Subsequently, water retention data of the soil are presented, which were obtained using both high-capacity tensiometers and the filter paper technique. These data were collected not only on undisturbed samples but also while subjecting the same material to drying paths. The results herein reported aim to make a link between the water retention behaviour of the Paola Doce clay sampled at Pisciolo and its fissured structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.