Abstract

Aerated and stirred suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the roles of respiration and photosynthesis in net H(+) efflux. Rates varied between 0.12 and 1.99 nanomoles H(+) per 10(6) cells per minute or 3 and 40 nanomoles H(+) per milligram chlorophyll per minute. The mean rate of H(+) efflux was 10% greater in the dark. 3-(3,4-Dichlorophenyl)-l,l-dimethylurea, an inhibitor of noncyclic photophosphorylation, did not inhibit H(+) efflux from illuminated cells. Bubbling with N(2) or addition of oligomycin, an inhibitor of mitochondrial ATP production, resulted in rapid and virtually complete inhibition of H(+) efflux in light or dark. In the absence of aeration, H(+) efflux came to a halt but resumed with aeration or illumination. When aeration was switched to CO(2)-free air, rates of H(+) efflux were reduced 43% in the dark and 57% in the light. Oligomycin eliminated dark CO(2) fixation but not photosynthetic CO(2) fixation. It is suggested that H(+) efflux is dependent on respiration and dark CO(2) fixation, but independent of photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call