Abstract

The potential of the PRESAGE™/Optical-CT system as a comprehensive 3D dosimetry tool has been demonstrated. The current study focused on detailed characterization of robustness (intra-dosimeter uniformity and temporal stability) and reproducibility (inter-dosimeter reproducibility) of PRESAGE™ inserts compatible with the RPC H&N phantom. In addition, the accuracy and precision of PRESAGE dose measurement was also evaluated. Four identical PRESAGE™ dosimeters (10cm diameter and 7cm height cylinders) were irradiated with the same rotationally symmetric treatment plan using a Varian accelerator. The treatment plan was designed to rigorously evaluate robustness and reproducibility for multiple dose levels and in 3D. All dosimeters were scanned by optical-CT at daily intervals to study temporal stability. Dose comparisons were made between PRESAGE, ECLIPSE, and independent measurement with EBT film at a select depth. The use of improved optics and acquisition technique yielded substantially higher quality 3D dosimetry data from PRESAGE than has been achieved previously (noise reduced to ∼1%, accuracy to within 3%). Data analysis showed excellent intra-dosimeter uniformity, temporal stability and inter-dosimeter reproducibility of relative radiochromic response. In general, the PRESAGE™ dose-distribution was found to agree better with EBT (∼99% pass rate) than with ECLIPSE calculations (∼92% pass rate) especially in penumbral regions for a 3% dose-difference and 3 mm distance-to-agreement evaluation criteria. The results demonstrate excellent robustness and reproducibility of the PRESAGE™ for relative 3D-dosimetry and represent a significant step towards incorporation in the RadOnc-clinic (e.g. integration with RPC phantom).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call