Abstract

Throughout 2004, PM(10) concentrations were measured at 10 min intervals at Hazelrigg, a remote location in NW England. The annual mean concentration was 6.1 microg m(-3) and likely origins were determined using directional and particle size characteristics. The fine temporal resolution of the monitoring also allowed several short periods (< 20 h) of persistently high PM(10) concentration to be identified and then 'typed' by event start time, duration, wind direction and particle size characteristics. A series of night time PM(10) anomalies (concentration < 465 microg m(-3)) of no obvious source were identified, and by elimination assumed to have originated from a ground-based fire of particle-rich fodder. A novel methodology combining Stokes' Law with systematic and rigorous modelling of source strength (using ADMS3.2) was developed to locate a possible burn site. The process was limited by the lack of previous modelling studies related to ground-based fires, and also by the capacity of ADMS3.2 to model sub-hourly time-varying emissions and fluctuations in wind speed and direction in the near field. However, modelling did suggest the source was located <400 m SSE of Hazelrigg, and investigation of this area revealed a burn site where tyres and plastic bags were piled nearby. Few studies have combined directional analysis and modelling to locate a source based on sampled data. This innovative methodology could be used by regulatory bodies to investigate the origins of unidentified PM(10) observed within the particle record.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call