Abstract

The kinetic (or sliding) friction of pharmaceutical tablets and capsules influences how they will behave during the conveying, coating, and packaging operations that are used for drug product manufacturing. In order to logically design equipment for manufacturing and packaging operations, and to simulate manufacturing and packaging performance (for example, using discrete or finite element modeling approaches), it is necessary to quantify the magnitude of the kinetic friction. In this work, the coefficient of kinetic friction of a range of pharmaceutical tablets and capsules has been measured for the first time using a pin-on-disk tribometer. Binary tablet–tablet contacts and the contacts between tablets or capsules and common equipment surfaces were studied. The range of the friction coefficients was large (between 0.00 and 0.74), and the values depended strongly on the identity of both contacting materials. Tablet–tablet contacts generally exhibited lower friction coefficients than tablet–polymer or tablet–metal contacts. Polymeric surfaces were generally less frictional than metal surfaces, even those that were highly polished. Tablet coatings appeared to have a marked effect on the kinetic friction coefficient between tablets and equipment surfaces, with the hardest coatings tending to be the least frictional. The surface roughness of the tablets and contacting surfaces did not contribute to the coefficient of kinetic friction in a consistent manner. The implications of the results for the design of conveying, processing and packaging operations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call