Abstract

Abstract A hybrid system proposed by three different specifications for the equipment of a tourist lodge in the headland of south-west Morocco was sized by analysing the limits of load profile constraints, such as hour-to-hour variability (HHR), day-to-day variability (DDR) and the operating reserve rate (ROR). Based on the three-factor Doehlert matrix recommendations, the simulations employed an energy-sizing tool for hybrid renewable-energy systems. Testing was conducted with DDR at 5–30%, HHR at 10–30% and ROR at 0–20%. Under these conditions, a second-order polynomial relationship with a correlation rate of ~90% was found between the net present cost (NPC) of the system, the levelized cost of electricity and the various constraint factors. The first specification, SPC(1), composed of generators and batteries, was introduced to control and validate the simulation independently of renewable energy, which showed a positive manifestation with the imposed constraints. The analysis expanded by introducing solar and wind energy resources. The SPC(2) configuration added PV modules to the SPC(1) and the SPC(3) configuration added wind turbines to SPC(2). The effect of DDR, HHR and ROR in the trials was significant by linear regression. At the same time, only DDR had a significant quadratic regression. The others, with their pairwise interactions, were insignificant. The desirability procedure made it possible to calculate the maximum limits of load profile constraint variables leading to targets of LCOE = 0.41 US$/kWh and NPC = US$320 080.1 of the load profile constraints: the DDR = 15.47% and the HHR = 26.55% at an ROR rate of 17.77%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call