Abstract

Cell membranes were shown to be sensitive to and affected by static magnetic fields (SMF). Cells were treated with four anticancer drugs followed by treatment with a combination of drugs and SMF. Individual cells were examined using atomic force microscopy (AFM). The drugs were taxol (alkaloid), doxorubicin (anthracycline), cisplatin (platinum compound) and cyclophosphamide (alkylating agent). Holes were observed in cells exposed to SMF but not in control groups. The number, size and shape of the holes were dependent on the drug type, SMF parameters and the duration of exposure. The results suggest that the application of a SMF could alter membrane permeability, increasing the flow of the anticancer drugs. This may be one of the reasons why SMF can strengthen the effect of anticancer drugs. Observations were also made of the effect of using different anticancer drugs. For example, the effect of SMF combined with taxol or cyclophosphamide on the cells was additive while the effect of SMF combined with cisplatin or doxorubicin was synergistic. The target sites of cisplatin and doxorubicin are nucleic acids; continued research is required into this important area to ascertain the effect of SMF on nucleic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.