Abstract

Heavy atom kinetic isotope effects (KIEs) were determined for the butyrylcholinesterase-catalyzed hydrolysis of formylthiocholine (FTC). The leaving-S, carbonyl-C, and carbonyl-O KIEs are 34k=0.994±0.004, 13k=1.0148±0.0007, and 18k=0.999±0.002, respectively. The observed KIEs support a mechanism for both acylation and deacylation where the steps up to and including the formation of the tetrahedral intermediate are at least partially rate determining. These results, in contrast to previous studies with acetylthiocholine, suggest that the decomposition of a tetrahedral intermediate is not rate-determining for FTC hydrolysis. Structural differences between the two substrates are likely responsible for the observed mechanism change with FTC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call