Abstract
The structure and function of membrane-wall attachment sites in walled cells, and how these relate to animal focal adhesions, is an area that is poorly understood. In view of this, we investigated how membrane-wall attachments that form upon plasmolysis, respond to peptides that disrupt animal focal adhesions. The degree of cytoplasmic disruption during plasmolysis was also investigated. Upon hyperosmotic challenge, the protoplast in hyphae of the oomycete Achlya bisexualis typically retracted incompletely due to membrane-wall attachments. The inclusion, in the plasmolysing solution, of peptides containing the sequence RGD disrupted these attachments in a dose-dependent manner. In some hyphae, protoplast retraction stopped temporarily at attachment points - upon resumption of retraction, material was left that traced the outline of the static protoplast. Staining of this material with fluorescence brightener indicated the presence of cellulose, which suggests that wall deposition was able to occur despite plasmolysis. The F-actin cytoskeleton was disrupted during plasmolysis; peripheral F-actin staining was observed, but there was no distinct F-actin cap; staining was more diffuse; and there were fewer plaques compared with nonplasmolysed hyphae. Our data indicate that membrane-wall attachment points are sensitive to RGD-containing peptides and that wall deposition continues despite protoplast retraction and F-actin disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Canadian Journal of Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.