Abstract
We present a study of the photochemical hydrosilylation of freestanding silicon nanocrystals (Si-NCs) using a near-UV source. The impact of reaction with alkenes and alkynes was studied using in situ photoluminescence (PL) spectroscopy, allowing measurement of both changes in intensity and PL maxima during the reaction. Understanding this behavior is important for the utilization of these materials in a number of applications where hydrosilylation is a leading method to functionalize Si-NCs. Changes in the PL were studied and shown arise from the influence of oxidation as well as the Si-C bond formation. Hydrosilylation with a range of conjugated alkynyl species was studied to understand how the introduction of these species to the NC surface can quench the PL from Si-NCs. These results were explained in context of the free-radical and exciton-mediated mechanisms for photochemical hydrosilylation proposed for Si-NCs. Materials in this study were characterized by Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), selected electron area diffraction (SAED), energy dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and dynamic light scattering (DLS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.