Abstract

A planar Bragg grating device has been developed that is capable of detecting changes in the refractive index of a wide range of fluids including solvents, acids and bases. The integration of this high precision refractive index sensor within a chemically resistant microfluidic flow system has enabled the investigation of diverse fluid interactions. By cycling between different solvents, both miscible and immiscible, within the microfluidic system it is shown that the previous solvent determines the nature of the refractive index profile across the transition in composition. This solvent dispersion effect is investigated with particular attention to the methanol-water transition, where transients in refractive index are observed that are an order of magnitude larger in amplitude than the difference between the bulk fluids. The potential complications of such phenomenon are discussed together with an example of a device that exploits this effect for the unambiguous composition measurement of a binary solvent system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call