Abstract

The recent drought in the southern Murray‐Darling Basin has seen a larger reduction in annual runoff in many places compared to historical droughts with similar annual rainfall reductions. Several reasons have been suggested for this, including proportionally less autumn and winter rainfall, fewer high rainfall years, and increased temperatures. Using the SIMHYD daily rainfall‐runoff model and scenarios of rainfall and potential evapotranspiration, we investigate the causes of the observed runoff reduction over 1997–2008 in the Campaspe river basin, an area representative of the southern Murray‐Darling Basin. This method accounts for 83% of the runoff reduction, with the reduction in annual rainfall accounting for 52%. The remainder is not explained by any single hydroclimatic feature but is mostly accounted for by the combination of changes in rainfall variability outside monthly and annual time scales (15%), changed seasonality of rainfall (11%), and increased potential evapotranspiration (5%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.