Abstract
We report the results of a recent study for the active vibration isolation with whole-spacecraft vibration isolation as an application background into which three parts are divided: (i) energy source control, (ii) nonlinearity and time delay, (iii) implementation and experiment. This paper is the first in this three-part series report, which presents theoretical and experimental investigations into pressure tracking system for energy source control of the isolator. Considering the special environment of the rocket and expected characteristics of actuators, where the isolator will be arranged between the rocket and the spacecraft, pneumatic actuator is proposed to realize the active isolation control. In order to improve the dynamic characteristics of the pneumatic isolator, a cascade control algorithm with double loop structure and predictive control algorithm for pressure tracking control of the inner loop are proposed. In the current paper, a pressure tracking control system using model predictive control (MPC) is studied first. A pneumatic model around pressure work point is built firstly by simplifying the flow equation of valve's orifices and pressure differential equation of the chambers. With this model, an MPC algorithm in the state space is developed, and problems including control parameter choice and command horizon generator are discussed in detail. In addition, by adding model error correction loop and velocity compensation feedback, effects of model uncertainty and volume variation of chambers are reduced greatly. Thus with this design, the real-time pressure tracking can be guaranteed, and so that the active control system can work at higher frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.