Abstract

In the grinding process, conventional method of flood delivering coolant fluid by a nozzle in order to achieve good surface integrity. However, hydrodynamic fluid pressure can be generated ahead of the contact zone due to the wedge effect between wheel peripheral surface and work surface. In the paper, a theoretical hydrodynamic pressure modeling is presented for flow of coolant fluid through the grinding zone in flood delivery grinding. Moreover, coolant induced force can be calculated by integrate the hydrodynamic pressure distribution over the whole contact length. The theoretical results show that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and work surface and the maximum pressure value was generated just in the minimum gap region in which higher fluid pressure gradient occuring. It can also be concluded the pressure distribution was uniform in the direction of width of wheel except at the edge of wheel because of the side-leakage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.