Abstract

This study is motivated by the amplified transmission rates of the SAR-CoV-2 virus in areas with high concentrations of fine particulates (PM2.5) as reported in northern Italy and Mexico. To develop a deeper understanding of the contribution of PM2.5 in the propagation of the SAR-CoV-2 virus in the population, the deposition patterns and efficiencies (DEs) of PM2.5 laced with the virus in healthy and asthmatic airways are studied. Physiologically correct 3-D models for generations 10–12 of the human airways are applied to carry out a numerical analysis of two-phase flow for full breathing cycles. Two concentrations of PM2.5 are applied for the simulation, i.e., 30 μg⋅m−3 and 80 μg⋅m−3 for three breathing statuses, i.e., rest, light exercise, and moderate activity. All the PM2.5 injected into the control volume is assumed to be 100% contaminated with the SAR-CoV-2 virus. Skewed air-flow phenomena at the bifurcations are proportional to the Reynolds number at the inlet, and their intensity in the asthmatic airway exceeded that of the healthy one. Upon exhalation, two peak air-flow vectors from daughter branches combine to form one big vector in the parent generation. Asthmatic airway models has higher deposition efficiencies (DEs) for contaminated PM2.5 as compared to the healthy one. Higher DEs arise in the asthmatic airway model due to complex secondary flows which increase the impaction of contaminated PM2.5 on airways’ walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.