Abstract

Cytochrome oxidase (EC 1.9.3.1; ferrocytochrome c:oxygen oxidoreductase) was studied during steady-state by optical and e.p.r. methods. Starting with either the 'resting' or the 'pulsed' enzyme, oxidase, cytochrome c, ascorbate and O2 were mixed and the reaction monitored optically. Tetramethylphenylenediamine was used as mediator to poise the steady-state to the desired reduction level. After mixing, the reaction was quenched by the used of rapid-freeze techniques. The e.p.r. spectra of samples captured at increasing tetramethylphenylenediamine concentrations (i.e. higher electron flux) show decreasing g = 2 (Cu A) and g = 3 (cytochrome a) signals. No Cu B or g = 6 signals (high-spin cytochrome a3) could be found during the reaction. Also, the signal with peaks at g = 1.69, 1.78 and 5 as well as the g = 12 signal was hardly detectable at higher turnover rates. The only new signal appearing during turnover is a radical signal, which is discussed in terms of a protein radical. Finally, a scheme is presented, proposing a catalytic cycle for cytochrome oxidase with respect to the O2 binding Cu B-cytochrome a3 unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.