Abstract

Numerical modeling of Hall effect data is used to demonstrate the existence of a conductive inversion layer at the surface of high-quality n-type single crystals of iron pyrite (cubic FeS2) grown by a flux technique. The presence of the inversion layer is corroborated by Hall measurements as a function of crystal thickness and photoemission spectroscopy. This hole-rich surface layer may explain both the low photovoltage of pyrite solar cells and the widely-observed high p-type conductivity of polycrystalline pyrite thin films that have together perplexed researchers for the past thirty years. We find that the thickness and conductivity of the inversion layer can be modified by mechanical and chemical treatments of the pyrite surface, suggesting that it may be possible to eliminate this hole-rich layer by passivating surface states and subsurface defects. Furthermore, modeling of the high-temperature electrical conductivity shows that the electronic band gap is 0.80 ± 0.05 eV at room temperature (compared to 0.94 eV according to optical transmission data), confirming that photovoltages of ∼500 mV should be attainable from pyrite under solar illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.