Abstract
Owing to the limited cold-air amount and pressure in supply systems, high-efficient heat transfer with low-level friction loss is highly desired for cooling units of a turbine blade. To exploit the potential improvement of hierarchically arranged ribs in cooling passages proposed previously, multi-parameter optimizations for rib arrangements are implemented by integrating the simplified conjugate-gradient algorithm with the turbulent flow and heat transfer model. Rib heights as design variables are optimized with various performance indices as objective functions at a fixed Re. The optimizations confirm that using the wall temperature difference and Nu as the objective function, respectively, a limited heat transfer improvement is achieved with a greatly increased friction loss. Taking the overall performance factor as the objective function, different optimal designs at different constraint conditions possess hierarchical characteristics. A significant friction loss reduction of 52.1%, 54.7%, and 54.8%, is achieved with a moderate heat transfer loss of 10.9%, 7.0%, and 2.3%. Despite different thermal and friction performances, their overall performances are consistent with a remarkable increase of 13.9%, 21.2%, and 27.3%. Finally, the optimization strategy coupling the multi-parameter optimization and hierarchical scheme is confirmed as effective for enhancing the thermohydraulic performance of convective heat transfer systems with perturbation elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.