Abstract

Influenced by a recent note by M. Ivanov and N. Zlateva, we prove a statement in the style of Nash-Moser-Ekeland theorem for mappings from a Frechet-Montel space with values in any Frechet space (not necessarily standard). The mapping under consideration is supposed to be continuous and directionally differentiable (in particular Gateaux differentiable) with the derivative having a right inverse. We also consider an approximation by a graphical derivative and by a linear operator in the spirit of Graves’ theorem. Finally, we derive corollaries of the abstract results in finite dimensions. We obtain, in particular, sufficient conditions for the directional semiregularity of a mapping defined on a (locally) convex compact set in directions from a locally conic set; and also conditions guaranteeing that the nonlinear image of a convex set contains a prescribed ordered interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.